TZ

High Temperature Basic Switch

- Suitable for your most rugged environmental applications
- Stable operation at an ambient temperature of $400^{\circ} \mathrm{C}$
- Incorporates a ceramic insulator, cobalt alloy spring, and special alloy contacts
- Variety of Levers and Plungers

Part	Rated Resistive Load Switch	Actuator types	Contact form	Operating Force	Seal type	Termination Style	Service Life Electrical (Min. @ Rated Loads)
TZ-1G	$\begin{aligned} & \text { 1A @ } \\ & \text { 250VAC } \end{aligned}$	Pin plunger	SPDT	500g	Unsealed	Screw Terminals	$\begin{gathered} 50,000 \\ \text { ops } \end{gathered}$
TZ-1GV2	$\begin{aligned} & \text { 1A @ } \\ & \text { 250VAC } \end{aligned}$	Hinge roller lever	SPDT	130 g	Unsealed	Screw Terminals	$\begin{gathered} 50,000 \\ \text { ops } \end{gathered}$
TZ-1GV	$\begin{aligned} & \text { 1A @ } \\ & \text { 250VAC } \end{aligned}$	Hinge lever	SPDT	100 g	Unsealed	Screw Terminals	$\begin{gathered} 50,000 \\ \text { ops } \end{gathered}$
TZ1GV22	$\begin{gathered} \text { 1A @ } \\ \text { 250VAC } \end{gathered}$	Short hinge roller lever	SPDT	240 g	Unsealed	Screw Terminals	$\begin{gathered} 50,000 \\ \text { ops } \end{gathered}$

High-temperature Basic Switch IZ

Stable Operation at an Ambient Temperature of $400^{\circ} \mathrm{C}$

- Incorporates a ceramic insulator, cobalt-alloy spring, and special-alloy contact, thus ensuring high contact reliability at high ambient temperature.
- Smoothly operates at an ambient temperature of $400^{\circ} \mathrm{C}$.

Ordering Information

Model Number Legend:

TZ-1 G \square

123

1. Rating

1: 1 A, 250 VAC
2. Contact Gap
G:
0.5 mm
3. Actuator

None: Pin plunger
V: \quad Hinge lever
V2: Hinge roller lever
V22: Short hinge roller lever

Actuator		Model
Pin plunger		TZ-1G
Hinge lever		TZ-1GV
Short hinge roller lever		TZ-1GV22
Hinge roller lever		

Specifications

■ Ratings

Rated voltage	Non-inductive load (A)				Inductive load (A)			
	Resistive load		Lamp load		Inductive load		Motor load	
	NC	NO	NC	NO	NC	NO	NC	NO
125 VAC	1		0.9	0.45	1		1.5	0.75
250 VAC	1		0.45	0.3	1		0.45	0.3
8 VDC	1		0.9	0.45	1		1.5	1.5
14 VDC	1		0.9	0.45	1		1.5	1.5
30 VDC	1		0.9	0.45	1		1.5	1.5
125 VDC	0.4		0.05	0.05	0.4		0.05	0.05

Note: 1. The above current ratings are the values of the steady-state current.
2. Inductive load has a power factor of 0.4 min . (AC) and a time constant of 7 ms max. (DC).
3. Lamp load has an inrush current of 10 times the steadystate current.
4. Motor load has an inrush current of 6 times the steady-state current.

Characteristics

Operating speed	0.05 mm to $1 \mathrm{~m} / \mathrm{s}$ (see note 1)
Operating frequency	Mechanical: 60 operations $/ \mathrm{min}$ Electrical: 20 operations $/ \mathrm{min}$
Insulation resistance	$100 \mathrm{M} \Omega \mathrm{min} .($ at 500 VDC)
Contact resistance	$100 \mathrm{~m} \Omega \mathrm{max}$. (initial value)
Dielectric strength	$1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between terminals of same polarity $1,500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between current-carrying metal parts and ground and between each terminal and non-current-carrying metal parts
Vibration resistance	Malfunction: 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude (see note 2)
Shock resistance	Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}\{50 \mathrm{G}\} \mathrm{max}$. Malfunction: $300 \mathrm{~m} / \mathrm{s}^{2}\{30 \mathrm{G}\}$ max. (see note 2$)$
Life expectancy	Mechanical: 100,000 operations min. Electrical: 50,000 operations min.
Degree of protection	IP00
Electric shock protection	Class I
Ambient temperature	Operating: $-65^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: $85 \% \mathrm{max}$.
Weight	Approx. 45 to 54 g

Note: 1. This operating speed applies to switches with pin-type pushbuttons.
2. This refers to a malfunction period of 1 ms max.

Contact Specifications

Item		
Contact	Specification	Cross bar
	Material	Platinum alloy
	Gap (standard value)	0.5 mm
	NC	9 A max.
	NO	4.5 A max.

Nomenclature

Dimensions

Dimensions and Operating Characteristics

Note: 1. All units are in millimeters unless otherwise indicated.
2. Each dimension has a tolerance of $\pm 0.4 \mathrm{~mm}$ unless otherwise specified.

Pin Plunger

TZ-1G

OF max.	$4.9 \mathrm{~N}\{500 \mathrm{gf}\}$
RF min.	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$
PT max.	0.4 mm
OT min.	0.13 mm
MD max.	0.15 mm
OP	$15.6 \pm 0.6 \mathrm{~mm}$

Hinge Lever

TZ-1GV

OF max.	$0.98 \mathrm{~N}\{100 \mathrm{gf}\}$
RF min.	$0.14 \mathrm{~N}\{14 \mathrm{gf}\}$
PT max.	3.5 mm
OT min.	4.6 mm
MD max.	1.3 mm
OP	$18 \pm 1.2 \mathrm{~mm}$

OF max.	$2.35 \mathrm{~N}\{240 \mathrm{gf}\}$
RF min.	$0.33 \mathrm{~N}\{34 \mathrm{gf}\}$
PT max.	1.5 mm
OT min.	1.9 mm
MD max.	0.6 mm
OP	$28.6 \pm 1.2 \mathrm{~mm}$

Hinge Roller Lever

TZ-1GV2

OF max.	$1.27 \mathrm{~N}\{130 \mathrm{gf}\}$
RF min.	$0.2 \mathrm{~N}\{20 \mathrm{gf}\}$
PT max.	2.6 mm
OT min.	3.5 mm
MD max.	1 mm
OP	$28.6 \pm 1.2 \mathrm{~mm}$

Precautions

Cautions

Handling

The Switch has a ceramic casing. Do not drop the Switch from a height of 30 cm or more. Doing so will break the casing.

Mounting

Be sure to turn OFF the power supply to the Switch before mounting, dismounting, wiring, or working on the Switch for maintenance. Not doing so may result in an electric shock or the Switch may burn.
Mount the switch with M3.5 stainless-steel screws with flat washer and spring washers securely.
Use M3.5 stainless-steel mounting screws with flat washers or spring washers to securely mount the Switch. Tighten the screws to a torque of 0.69 to $0.98 \mathrm{~N} \bullet \mathrm{~m}\{7$ to $10 \mathrm{kgf} \bullet \mathrm{cm}\}$.

Mounting Holes

Two, 3.56-dia. mounting holes or
M3.5 screw holes

Mounting Dimensions

Connect nickel-plated solderless terminals to the TZ. Each terminal must be secured on the TZ with M3.5 nut.
Make sure that the ceramic case is free of metal powder or other impurities.

Operation

Do not modify the Actuator and change the operating position.
Make sure that the switching speed is not extremely slow or do not use the Switch so that the pushbutton will be set to a position between the FP and OP.

Make sure that the pin-type pushbutton and the switching stroke are on the same vertical line.
Make sure that the switching frequency or speed is within the specified range.

1. If the switching speed is extremely slow, the contact may not be switched smoothly, which may result in a contact failure or contact welding.
2. If the switching speed is extremely fast, switching shock may damage the Switch soon. If the switching frequency is too high, the contact may not catch up with the speed.
The rated permissible switching speed and frequency indicate the switching reliability of the Switch.
The life of a Switch is determined at the specified switching speed. The life varies with the switching speed and frequency even when they are within the permissible ranges. In order to determine the life of a Switch model to be applied to a particular use, it is best to conduct an appropriate life expectancy test on some samples of the model under actual conditions.
Make sure that the actuator travel does not exceed the permissible OT position. The operating stroke must be set to 70% to 100% of the rated OT.
